
NAOGAON POLYTECHNIC INSTITUTE, NAOGAON.

Subject Name : Python Programming

Subject Code : 28521

Tchonology : Computer Science & Technology

Semester : 2nd

Lesson plan-1(Theory Classs 1)

1. BASICS OF PROGRAMMING

1.1 State Computer Programming.

1.2 Explain Programming Language and its Classification.

1.3 State Translator Programs.

 TEACHER’S NAME : Md. Mahbubul Alam

 DESIGNATION : Chief Instructor (Tech/Computer)

Computer program

A computer program is a sequence or set of instructions in a programming

language for a computer to execute. It is one component of software, which also

includes documentation and other intangible components. A computer program

in its human-readable form is called source code.

Examples of a Computer Program:

Examples of a Computer Program · Firmware · Operating Systems ·

Applications · Mobile Apps · Cloud Services · Systems · Platforms · Servers.

MS Word, MS Excel, Adobe Photoshop, Internet Explorer, Chrome, etc., are

examples of computer programs

A list of some of the most well-known computer software examples

includes: Operating systems (such as Microsoft Windows, Linux, macOS)

Productivity Software (for example, Microsoft Office Suite including Word,

Excel, and PowerPoint) Internet Browsers (including Firefox, Chrome, and

Safari)

Computer programming

Computer programming is the process that professionals use to write code

that instructs how a computer, application or software program performs.

Computer programming or coding is the composition of sequences of

instructions, called programs, that computers can follow to perform tasks.

Programming language

A programming language is a system of notation for writing computer

programs.

A programming language is a way for programmers (developers) to

communicate with computers. Programming languages consist of a set of

rules that allows string values to be converted into various ways of

generating machine code, or, in the case of visual programming languages,

graphical elements.

Language types

Machine and assembly languages

A machine language consists of the numeric codes for the operations that a particular computer

can execute directly. The codes are strings of 0s and 1s, or binary digits (“bits”), which are

frequently converted both from and to hexadecimal (base 16) for human viewing and

modification. Machine language instructions typically use some bits to represent operations, such

as addition, and some to represent operands, or perhaps the location of the next instruction.

Machine language is difficult to read and write, since it does not resemble conventional

mathematical notation or human language, and its codes vary from computer to computer.

Assembly language is one level above machine language. It uses short mnemonic codes for

instructions and allows the programmer to introduce names for blocks of memory that hold data.

One might thus write “add pay, total” instead of “0110101100101000” for an instruction that

adds two numbers.

Assembly language is designed to be easily translated into machine language. Although blocks

of data may be referred to by name instead of by their machine addresses, assembly language

does not provide more sophisticated means of organizing complex information. Like machine

language, assembly language requires detailed knowledge of internal computer architecture. It is

useful when such details are important, as in programming a computer to interact with peripheral

devices (printers, scanners, storage devices, and so forth).

Algorithmic languages

Algorithmic languages are designed to express mathematical or symbolic computations. They

can express algebraic operations in notation similar to mathematics and allow the use of

subprograms that package commonly used operations for reuse. They were the first high-level

languages.

FORTRAN

The first important algorithmic language was FORTRAN (formula translation), designed in 1957

by an IBM team led by John Backus. It was intended for scientific computations with real

numbers and collections of them organized as one- or multidimensional arrays. Its control

structures included conditional IF statements, repetitive loops (so-called DO loops), and a GOTO

statement that allowed nonsequential execution of program code. FORTRAN made it convenient

to have subprograms for common mathematical operations, and built libraries of them.

FORTRAN was also designed to translate into efficient machine language. It was immediately

successful and continues to evolve.

https://www.britannica.com/technology/binary-code
https://www.merriam-webster.com/dictionary/mnemonic
https://www.britannica.com/technology/machine
https://www.britannica.com/technology/computer-architecture
https://www.britannica.com/dictionary/programming
https://www.britannica.com/technology/input-output-device
https://www.britannica.com/technology/input-output-device
https://www.britannica.com/technology/FORTRAN
https://www.britannica.com/technology/FORTRAN
https://www.britannica.com/topic/International-Business-Machines-Corporation
https://www.britannica.com/biography/John-Warner-Backus
https://www.britannica.com/science/real-number
https://www.britannica.com/science/real-number

ALGOL

ALGOL (algorithmic language) was designed by a committee of American and European

computer scientists during 1958–60 for publishing algorithms, as well as for doing computations.

Like LISP (described in the next section), ALGOL had recursive subprograms—procedures that

could invoke themselves to solve a problem by reducing it to a smaller problem of the same kind.

ALGOL introduced block structure, in which a program is composed of blocks that might

contain both data and instructions and have the same structure as an entire program. Block

structure became a powerful tool for building large programs out of small components.

ALGOL contributed a notation for describing the structure of a programming language, Backus–

Naur Form, which in some variation became the standard tool for stating the syntax (grammar)

of programming languages. ALGOL was widely used in Europe, and for many years it remained

the language in which computer algorithms were published. Many important languages, such as

Pascal and Ada (both described later), are its descendants.

C

The C programming language was developed in 1972 by Dennis Ritchie and Brian Kernighan at

the AT&T Corporation for programming computer operating systems. Its capacity to structure

data and programs through the composition of smaller units is comparable to that of ALGOL. It

uses a compact notation and provides the programmer with the ability to operate with the

addresses of data as well as with their values. This ability is important in systems programming,

and C shares with assembly language the power to exploit all the features of a computer’s

internal architecture. C, along with its descendant C++, remains one of the most common

languages.

Business-oriented languages

COBOL

COBOL (common business oriented language) has been heavily used by businesses since its

inception in 1959. A committee of computer manufacturers and users and U.S. government

organizations established CODASYL (Committee on Data Systems and Languages) to develop

and oversee the language standard in order to ensure its portability across diverse systems.

COBOL uses an English-like notation—novel when introduced. Business computations organize

and manipulate large quantities of data, and COBOL introduced the record data structure for

such tasks. A record clusters heterogeneous data—such as a name, an ID number, an age, and an

address—into a single unit. This contrasts with scientific languages, in which homogeneous

arrays of numbers are common. Records are an important example of “chunking” data into a

single object, and they appear in nearly all modern languages.

https://www.britannica.com/technology/ALGOL-computer-language
https://www.britannica.com/place/Algol-star
https://www.merriam-webster.com/dictionary/algorithms
https://www.britannica.com/technology/LISP-computer-language
https://www.merriam-webster.com/dictionary/invoke
https://www.merriam-webster.com/dictionary/syntax
https://www.britannica.com/technology/Pascal-computer-language
https://www.britannica.com/technology/C-computer-programming-language
https://www.britannica.com/biography/Dennis-M-Ritchie
https://www.britannica.com/topic/ATandT-Corporation
https://www.britannica.com/technology/operating-system
https://www.merriam-webster.com/dictionary/composition
https://www.britannica.com/technology/systems-programming
https://www.britannica.com/technology/C-computer-language
https://www.britannica.com/technology/COBOL
https://www.britannica.com/technology/COBOL
https://www.merriam-webster.com/dictionary/diverse
https://www.britannica.com/technology/record-computing
https://www.britannica.com/technology/data-structure
https://www.merriam-webster.com/dictionary/heterogeneous
https://www.merriam-webster.com/dictionary/homogeneous

SQL

SQL (structured query language) is a language for specifying the organization of databases

(collections of records). Databases organized with SQL are called relational, because SQL

provides the ability to query a database for information that falls in a given relation. For

example, a query might be “find all records with both last name Smith and city New York.”

Commercial database programs commonly use an SQL-like language for their queries.

Education-oriented languages

BASIC

BASIC (beginner’s all-purpose symbolic instruction code) was designed at Dartmouth College in

the mid-1960s by John Kemeny and Thomas Kurtz. It was intended to be easy to learn by

novices, particularly non-computer science majors, and to run well on a time-sharing computer

with many users. It had simple data structures and notation and it was interpreted: a BASIC

program was translated line-by-line and executed as it was translated, which made it easy to

locate programming errors.

Its small size and simplicity also made BASIC a popular language for early personal computers.

Its recent forms have adopted many of the data and control structures of other contemporary

languages, which makes it more powerful but less convenient for beginners.

Pascal

About 1970 Niklaus Wirth of Switzerland designed Pascal to teach structured programming,

which emphasized the orderly use of conditional and loop control structures without GOTO

statements. Although Pascal resembled ALGOL in notation, it provided the ability to define data

types with which to organize complex information, a feature beyond the capabilities of ALGOL

as well as FORTRAN and COBOL. User-defined data types allowed the programmer to

introduce names for complex data, which the language translator could then check for correct

usage before running a program.

During the late 1970s and ’80s, Pascal was one of the most widely used languages for

programming instruction. It was available on nearly all computers, and, because of its

familiarity, clarity, and security, it was used for production software as well as for education.

Logo

Logo originated in the late 1960s as a simplified LISP dialect for education; Seymour Papert and

others used it at MIT to teach mathematical thinking to schoolchildren. It had a more

conventional syntax than LISP and featured “turtle graphics,” a simple method for generating

computer graphics. (The name came from an early project to program a turtlelike robot.) Turtle

graphics used body-centred instructions, in which an object was moved around a screen by

commands, such as “left 90” and “forward,” that specified actions relative to the current position

https://www.britannica.com/technology/SQL
https://www.britannica.com/technology/database
https://www.britannica.com/topic/surname
https://www.britannica.com/place/New-York-City
https://www.britannica.com/technology/BASIC
https://www.britannica.com/technology/BASIC
https://www.britannica.com/topic/Dartmouth-College
https://www.britannica.com/biography/John-George-Kemeny
https://www.britannica.com/dictionary/novices
https://www.britannica.com/technology/computer/Time-sharing-and-minicomputers#ref216066
https://www.britannica.com/technology/data-structure
https://www.britannica.com/technology/Pascal-computer-language
https://www.britannica.com/biography/Niklaus-Emil-Wirth
https://www.britannica.com/place/Switzerland
https://www.britannica.com/technology/Pascal-computer-language
https://www.britannica.com/dictionary/emphasized
https://www.britannica.com/technology/ALGOL-computer-language
https://www.britannica.com/technology/FORTRAN
https://www.britannica.com/technology/COBOL
https://www.britannica.com/technology/software
https://www.britannica.com/technology/Logo
https://www.britannica.com/technology/Logo
https://www.britannica.com/technology/LISP-computer-language
https://www.merriam-webster.com/dictionary/dialect
https://www.britannica.com/topic/education
https://www.britannica.com/biography/Seymour-Papert
https://www.merriam-webster.com/dictionary/syntax
https://www.britannica.com/topic/computer-graphics

and orientation of the object rather than in terms of a fixed framework. Together with recursive

routines, this technique made it easy to program intricate and attractive patterns.

Hypertalk

Hypertalk was designed as “programming for the rest of us” by Bill Atkinson for Apple’s

Macintosh. Using a simple English-like syntax, Hypertalk enabled anyone to combine text,

graphics, and audio quickly into “linked stacks” that could be navigated by clicking with a

mouse on standard buttons supplied by the program. Hypertalk was particularly popular among

educators in the 1980s and early ’90s for classroom multimedia presentations. Although

Hypertalk had many features of object-oriented languages (described in the next section), Apple

did not develop it for other computer platforms and let it languish; as Apple’s market share

declined in the 1990s, a new cross-platform way of displaying multimedia left Hypertalk all but

obsolete (see the section World Wide Web display languages).

Object-oriented languages

Object-oriented languages help to manage complexity in large programs. Objects package data

and the operations on them so that only the operations are publicly accessible and internal details

of the data structures are hidden. This information hiding made large-scale programming easier

by allowing a programmer to think about each part of the program in isolation. In addition,

objects may be derived from more general ones, “inheriting” their capabilities. Such an object

hierarchy made it possible to define specialized objects without repeating all that is in the more

general ones.

Object-oriented programming began with the Simula language (1967), which added information

hiding to ALGOL. Another influential object-oriented language was Smalltalk (1980), in which a

program was a set of objects that interacted by sending messages to one another.

C++

The C++ language, developed by Bjarne Stroustrup at AT&T in the mid-1980s, extended C by

adding objects to it while preserving the efficiency of C programs. It has been one of the most

important languages for both education and industrial programming. Large parts of many

operating systems were written in C++. C++, along with Java, has become popular for

developing commercial software packages that incorporate multiple interrelated applications.

C++ is considered one of the fastest languages and is very close to low-level languages, thus

allowing complete control over memory allocation and management. This very feature and its

many other capabilities also make it one of the most difficult languages to learn and handle on a

large scale.

C#

C# (pronounced C sharp like the musical note) was developed by Anders Hejlsberg at Microsoft

in 2000. C# has a syntax similar to that of C and C++ and is often used for developing games and

applications for the Microsoft Windows operating system.

https://www.britannica.com/technology/Hypertalk
https://www.britannica.com/technology/Hypertalk
https://www.britannica.com/topic/Apple-Inc
https://www.britannica.com/dictionary/combine
https://www.britannica.com/technology/mouse-computer-device
https://www.britannica.com/technology/computer-programming-language/SGML#ref248133
https://www.britannica.com/technology/object-oriented-language
https://www.merriam-webster.com/dictionary/hierarchy
https://www.britannica.com/technology/C-computer-language
https://www.britannica.com/technology/C-computer-language
https://www.britannica.com/technology/C-computer-programming-language
https://www.merriam-webster.com/dictionary/efficiency
https://www.britannica.com/technology/Microsoft-Windows
https://www.britannica.com/technology/operating-system

Ada

Ada was named for Augusta Ada King, countess of Lovelace, who was an assistant to the 19th-

century English inventor Charles Babbage, and is sometimes called the first computer

programmer. Ada, the language, was developed in the early 1980s for the U.S. Department of

Defense for large-scale programming. It combined Pascal-like notation with the ability to

package operations and data into independent modules. Its first form, Ada 83, was not fully

object-oriented, but the subsequent Ada 95 provided objects and the ability to construct

hierarchies of them. While no longer mandated for use in work for the Department of Defense,

Ada remains an effective language for engineering large programs.

Java

In the early 1990s Java was designed by Sun Microsystems, Inc., as a programming language for

the World Wide Web (WWW). Although it resembled C++ in appearance, it was object-

oriented. In particular, Java dispensed with lower-level features, including the ability to

manipulate data addresses, a capability that is neither desirable nor useful in programs for

distributed systems. In order to be portable, Java programs are translated by a Java Virtual

Machine specific to each computer platform, which then executes the Java program. In addition

to adding interactive capabilities to the Internet through Web “applets,” Java has been widely

used for programming small and portable devices, such as mobile telephones.

Visual Basic

Visual Basic was developed by Microsoft to extend the capabilities of BASIC by adding objects

and “event-driven” programming: buttons, menus, and other elements of graphical user

interfaces (GUIs). Visual Basic can also be used within other Microsoft software to program

small routines. Visual Basic was succeeded in 2002 by Visual Basic .NET, a vastly different

language based on C#, a language with similarities to C++.

Python

The open-source language Python was developed by Dutch programmer Guido van Rossum in

1991. It was designed as an easy-to-use language, with features such as using indentation instead

of brackets to group statements. Python is also a very compact language, designed so that

complex jobs can be executed with only a few statements. In the 2010s, Python became one of

the most popular programming languages, along with Java and JavaScript.

Declarative languages

Declarative languages, also called nonprocedural or very high level, are programming languages

in which (ideally) a program specifies what is to be done rather than how to do it. In such

languages there is less difference between the specification of a program and its implementation

than in the procedural languages described so far. The two common kinds of declarative

languages are logic and functional languages.

https://www.britannica.com/technology/Ada-computer-language
https://www.britannica.com/place/Ada-Oklahoma
https://www.britannica.com/biography/Ada-Lovelace
https://www.britannica.com/biography/Charles-Babbage
https://www.britannica.com/topic/US-Department-of-Defense
https://www.britannica.com/topic/US-Department-of-Defense
https://www.merriam-webster.com/dictionary/hierarchies
https://www.merriam-webster.com/dictionary/mandated
https://www.britannica.com/technology/Java-computer-programming-language
https://www.britannica.com/technology/Java-computer-programming-language
https://www.britannica.com/topic/Sun-Microsystems-Inc
https://www.britannica.com/topic/World-Wide-Web
https://www.britannica.com/dictionary/capabilities
https://www.britannica.com/technology/Internet
https://www.britannica.com/technology/telephone
https://www.britannica.com/technology/Visual-Basic
https://www.britannica.com/technology/graphical-user-interface
https://www.britannica.com/technology/graphical-user-interface
https://www.britannica.com/technology/software
https://www.britannica.com/technology/C-computer-language
https://www.britannica.com/technology/Python-computer-language
https://www.britannica.com/dictionary/brackets
https://www.britannica.com/technology/Java-computer-programming-language
https://www.britannica.com/technology/JavaScript
https://www.britannica.com/technology/declarative-language

Logic programming languages, of which PROLOG (programming in logic) is the best known,

state a program as a set of logical relations (e.g., a grandparent is the parent of a parent of

someone). Such languages are similar to the SQL database language. A program is executed by

an “inference engine” that answers a query by searching these relations systematically to make

inferences that will answer a query. PROLOG has been used extensively in natural language

processing and other AI programs.

Functional languages have a mathematical style. A functional program is constructed by

applying functions to arguments. Functional languages, such as LISP, ML, and Haskell, are used

as research tools in language development, in automated mathematical theorem provers, and in

some commercial projects.

Scripting languages

Scripting languages are sometimes called little languages. They are intended to solve relatively

small programming problems that do not require the overhead of data declarations and other

features needed to make large programs manageable. Scripting languages are used for writing

operating system utilities, for special-purpose file-manipulation programs, and, because they are

easy to learn, sometimes for considerably larger programs.

Perl was developed in the late 1980s, originally for use with the UNIX operating system. It was

intended to have all the capabilities of earlier scripting languages. Perl provided many ways to

state common operations and thereby allowed a programmer to adopt any convenient style. In

the 1990s it became popular as a system-programming tool, both for small utility programs and

for prototypes of larger ones. Together with other languages discussed below, it also became

popular for programming computer Web “servers.”

Document formatting languages

Document formatting languages specify the organization of printed text and graphics. They fall

into several classes: text formatting notation that can serve the same functions as a word

processing program, page description languages that are interpreted by a printing device, and,

most generally, markup languages that describe the intended function of portions of a document.

TeX

TeX was developed during 1977–86 as a text formatting language by Donald Knuth, a Stanford

University professor, to improve the quality of mathematical notation in his books. Text

formatting systems, unlike WYSIWYG (“What You See Is What You Get”) word processors,

embed plain text formatting commands in a document, which are then interpreted by the

language processor to produce a formatted document for display or printing. TeX marks italic

text, for example, as {\it this is italicized}, which is then displayed as this is italicized.

TeX largely replaced earlier text formatting languages. Its powerful and flexible abilities gave an

expert precise control over such things as the choice of fonts, layout of tables, mathematical

notation, and the inclusion of graphics within a document. It is generally used with the aid of

https://www.britannica.com/technology/logic-programming-language
https://www.britannica.com/technology/PROLOG
https://www.britannica.com/technology/SQL
https://www.merriam-webster.com/dictionary/inferences
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/functional-language
https://www.britannica.com/technology/LISP-computer-language
https://www.britannica.com/technology/computer-scripting-language
https://www.britannica.com/technology/operating-system
https://www.britannica.com/technology/Perl
https://www.britannica.com/technology/UNIX
https://www.merriam-webster.com/dictionary/prototypes
https://www.britannica.com/technology/word-processing
https://www.britannica.com/technology/word-processing
https://www.britannica.com/technology/TeX
https://www.britannica.com/technology/TeX
https://www.britannica.com/biography/Donald-Knuth
https://www.britannica.com/topic/Stanford-University
https://www.britannica.com/topic/Stanford-University
https://www.britannica.com/dictionary/embed

“macro” packages that define simple commands for common operations, such as starting a new

paragraph; LaTeX is a widely used package. TeX contains numerous standard “style sheets” for

different types of documents, and these may be further adapted by each user. There are also

related programs such as BibTeX, which manages bibliographies and has style sheets for all of

the common bibliography styles, and versions of TeX for languages with various alphabets.

PostScript

PostScript is a page-description language developed in the early 1980s by Adobe Systems

Incorporated on the basis of work at Xerox PARC (Palo Alto Research Center). Such languages

describe documents in terms that can be interpreted by a personal computer to display the

document on its screen or by a microprocessor in a printer or a typesetting device.

PostScript commands can, for example, precisely position text, in various fonts and sizes, draw

images that are mathematically described, and specify colour or shading. PostScript uses postfix,

also called reverse Polish notation, in which an operation name follows its arguments. Thus,

“300 600 20 270 arc stroke” means: draw (“stroke”) a 270-degree arc with radius 20 at location

(300, 600). Although PostScript can be read and written by a programmer, it is normally

produced by text formatting programs, word processors, or graphic display tools.

The success of PostScript is due to its specification’s being in the public domain and to its being

a good match for high-resolution laser printers. It has influenced the development of printing

fonts, and manufacturers produce a large variety of PostScript fonts.

SGML

SGML (standard generalized markup language) is an international standard for the definition of

markup languages; that is, it is a metalanguage. Markup consists of notations called tags that

specify the function of a piece of text or how it is to be displayed. SGML emphasizes descriptive

markup, in which a tag might be “<emphasis>.” Such a markup denotes the document function,

and it could be interpreted as reverse video on a computer screen, underlining by a typewriter, or

italics in typeset text.

SGML is used to specify DTDs (document type definitions). A DTD defines a kind of document,

such as a report, by specifying what elements must appear in the document—e.g., <Title>—and

giving rules for the use of document elements, such as that a paragraph may appear within a table

entry but a table may not appear within a paragraph. A marked-up text may be analyzed by a

parsing program to determine if it conforms to a DTD. Another program may read the markups

to prepare an index or to translate the document into PostScript for printing. Yet another might

generate large type or audio for readers with visual or hearing disabilities.

World Wide Web display languages

HTML

https://www.britannica.com/technology/LaTeX-computer-programming-language
https://www.britannica.com/dictionary/bibliographies
https://www.britannica.com/technology/PostScript
https://www.britannica.com/technology/PostScript
https://www.britannica.com/topic/Adobe-Systems-Incorporated
https://www.britannica.com/topic/Adobe-Systems-Incorporated
https://www.britannica.com/topic/PARC-company
https://www.britannica.com/technology/personal-computer
https://www.britannica.com/technology/microprocessor
https://www.britannica.com/technology/typesetting
https://www.britannica.com/dictionary/domain
https://www.britannica.com/technology/SGML
https://www.britannica.com/technology/SGML
https://www.britannica.com/topic/metalanguage
https://www.britannica.com/technology/DTD
https://www.britannica.com/dictionary/parsing
https://www.britannica.com/technology/PostScript
https://www.britannica.com/topic/World-Wide-Web
https://www.britannica.com/technology/HTML

The World Wide Web is a system for displaying text, graphics, and audio retrieved over the

Internet on a computer monitor. Each retrieval unit is known as a Web page, and such pages

frequently contain “links” that allow related pages to be retrieved. HTML (hypertext markup

language) is the markup language for encoding Web pages. It was designed by Tim Berners-Lee

at the CERN nuclear physics laboratory in Switzerland during the 1980s and is defined by an

SGML DTD. HTML markup tags specify document elements such as headings, paragraphs, and

tables. They mark up a document for display by a computer program known as a Web browser.

The browser interprets the tags, displaying the headings, paragraphs, and tables in a layout that is

adapted to the screen size and fonts available to it.

HTML documents also contain anchors, which are tags that specify links to other Web pages. An

anchor has the form Encyclopædia Britannica,

where the quoted string is the URL (uniform resource locator) to which the link points (the Web

“address”) and the text following it is what appears in a Web browser, underlined to show that it

is a link to another page. What is displayed as a single page may also be formed from multiple

URLs, some containing text and others graphics.

XML

HTML does not allow one to define new text elements; that is, it is not extensible. XML

(extensible markup language) is a simplified form of SGML intended for documents that are

published on the Web. Like SGML, XML uses DTDs to define document types and the

meanings of tags used in them. XML adopts conventions that make it easy to parse, such as that

document entities are marked by both a beginning and an ending tag, such as

<BEGIN>…</BEGIN>. XML provides more kinds of hypertext links than HTML, such as

bidirectional links and links relative to a document subsection.

Because an author may define new tags, an XML DTD must also contain rules that instruct a

Web browser how to interpret them—how an entity is to be displayed or how it is to generate an

action such as preparing an e-mail message.

Web scripting

Web pages marked up with HTML or XML are largely static documents. Web scripting can add

information to a page as a reader uses it or let the reader enter information that may, for example,

be passed on to the order department of an online business. CGI (common gateway interface)

provides one mechanism; it transmits requests and responses between the reader’s Web browser

and the Web server that provides the page. The CGI component on the server contains small

programs called scripts that take information from the browser system or provide it for display.

A simple script might ask the reader’s name, determine the Internet address of the system that

the reader uses, and print a greeting. Scripts may be written in any programming language, but,

because they are generally simple text-processing routines, scripting languages like PERL are

particularly appropriate.

https://www.britannica.com/topic/World-Wide-Web
https://www.britannica.com/technology/Internet
https://www.britannica.com/technology/HTML
https://www.britannica.com/technology/markup-language
https://www.britannica.com/biography/Tim-Berners-Lee
https://www.britannica.com/topic/CERN
https://www.britannica.com/technology/computer-program
https://www.britannica.com/dictionary/layout
https://www.britannica.com/technology/anchor-computer-programming
https://www.britannica.com/technology/XML
https://www.britannica.com/technology/XML
https://www.britannica.com/dictionary/conventions
https://www.britannica.com/technology/browser
https://www.britannica.com/technology/common-gateway-interface
https://www.britannica.com/dictionary/transmits
https://www.britannica.com/topic/computer-animation

Another approach is to use a language designed for Web scripts to be executed by the browser.

JavaScript is one such language, designed by the Netscape Communications Corp., which may

be used with both Netscape’s and Microsoft’s browsers. JavaScript is a simple language, quite

different from Java. A JavaScript program may be embedded in a Web page with the HTML tag

<script language=“JavaScript”>. JavaScript instructions following that tag will be executed by

the browser when the page is selected. In order to speed up display of dynamic (interactive)

pages, JavaScript is often combined with XML or some other language for exchanging

information between the server and the client’s browser. In particular, the XMLHttpRequest

command enables asynchronous data requests from the server without requiring the server to

resend the entire Web page. This approach, or “philosophy,” of programming is called Ajax

(asynchronous JavaScript and XML).

VB Script is a subset of Visual Basic. Originally developed for Microsoft’s Office suite of

programs, it was later used for Web scripting as well. Its capabilities are similar to those of

JavaScript, and it may be embedded in HTML in the same fashion.

Behind the use of such scripting languages for Web programming lies the idea of component

programming, in which programs are constructed by combining independent previously written

components without any further language processing. JavaScript and VB Script programs were

designed as components that may be attached to Web browsers to control how they display

information.

Computer Language Translator and its Types

A translator is a computer program that translates a program written in a given programming

language into a functionally equivalent program in a different language.

Depending on the translator, this may mean changing or simplifying the flow of the program

without changing its core. This makes a program that works the same as the original.

Types of Language Translators

There are mainly three types of translators that are used to translate different programming

languages into machine-equivalent code:

1. Assembler

2. Compiler

3. Interpreter

Assembler

An assembler translates assembly language into machine code.

https://www.britannica.com/technology/JavaScript
https://www.britannica.com/topic/Netscape-Communications-Corp
https://www.britannica.com/technology/Java-computer-programming-language
https://www.merriam-webster.com/dictionary/dynamic
https://www.britannica.com/technology/VB-Script
https://www.britannica.com/dictionary/embedded
https://codescracker.com/computer-fundamental/computer-language-translators-with-types.htm#b
https://codescracker.com/computer-fundamental/computer-language-translators-with-types.htm#c
https://codescracker.com/computer-fundamental/computer-language-translators-with-types.htm#a

Assembly language consists of mnemonics for machine op-codes, so assemblers perform a 1:1

translation from mnemonic to direct instruction. For example, LDA #4 converts to

0001001000100100.

Conversely, one instruction in a high-level language will translate to one or more instructions at

the machine level.

The Benefits of Using Assembler

Here is a list of the advantages of using assembler:

• As a 1 to 1 relationship, assembly language to machine code translation is very fast.

• Assembly code is often very efficient (and therefore fast) because it is a low-level

language.

• Assembly code is fairly easy to understand due to the use of English, like in mnemonics.

The Drawbacks of Using Assembler

Assembly language is written for a certain instruction set and/or processor.

Assembly tends to be optimized for the hardware it is designed for, meaning it is often

incompatible with different hardware.

Lots of assembly code is needed to do a relatively simple task, and complex programs require

lots of programming time.

Compiler

A compiler is a computer program that translates code written in a high-level language into a

low-level language, machine code.

The most common reason for translating source code is to create an executable program

(converting from high-level language into machine language).

Advantages of using a compiler

Below is a list of the advantages of using a compiler:

• Source code is not included; therefore, compiled code is more secure than interpreted

code.

• tends to produce faster code and is better at interpreting source code.

• Because the program generates an executable file, it can be run without the need for the

source code.

Disadvantages of using a compiler

Below is a list of the disadvantages of using a compiler:

• Before a final executable file can be created, object code must be generated; this can be a

time-consuming process.

• The source code must be 100% correct for the executable file to be produced.

Interpreter

An interpreter program executes other programs directly, running through the program code and

executing it line-by-line. As it analyses every line, an interpreter is slower than running compiled

code, but it can take less time to interpret program code than to compile and then run it. This is

very useful when prototyping and testing code.

Interpreters are written for multiple platforms; this means code written once can be immediately

run on different systems without having to recompile for each. Examples of this include flash-

based web programs that will run on your PC, Mac, gaming console, and mobile phone.

Advantages of using an interpreter

Here is a list of some of the main advantages of using an interpreter:

• easier to debug (check errors) than a compiler.

• It is easier to create multi-platform code, as each different platform would have an

interpreter to run the same code.

• useful for prototyping software and testing basic program logic.

Disadvantages of using an interpreter

And here is the list of some of the main disadvantages of using an interpreter:

• Source code is required for the program to be executed, and this source code can be read,

making it insecure.

• Due to the on-line translation method, interpreters are generally slower than compiled

programs.

